"""Chain that carries on a conversation and calls an LLM."""

from typing import Dict, List

from langchain_core._api import deprecated
from langchain_core.memory import BaseMemory
from langchain_core.prompts import BasePromptTemplate
from langchain_core.pydantic_v1 import Field, root_validator

from langchain.chains.conversation.prompt import PROMPT
from langchain.chains.llm import LLMChain
from langchain.memory.buffer import ConversationBufferMemory


@deprecated(
    since="0.2.7",
    alternative=(
        "RunnableWithMessageHistory: "
        "https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.history.RunnableWithMessageHistory.html"  # noqa: E501
    ),
    removal="1.0",
)
class ConversationChain(LLMChain):
    """Chain to have a conversation and load context from memory.

    This class is deprecated in favor of ``RunnableWithMessageHistory``. Please refer
    to this tutorial for more detail: https://python.langchain.com/v0.2/docs/tutorials/chatbot/

    ``RunnableWithMessageHistory`` offers several benefits, including:

    - Stream, batch, and async support;
    - More flexible memory handling, including the ability to manage memory
      outside the chain;
    - Support for multiple threads.

    Below is a minimal implementation, analogous to using ``ConversationChain`` with
    the default ``ConversationBufferMemory``:

        .. code-block:: python

            from langchain_core.chat_history import InMemoryChatMessageHistory
            from langchain_core.runnables.history import RunnableWithMessageHistory
            from langchain_openai import ChatOpenAI


            store = {}  # memory is maintained outside the chain

            def get_session_history(session_id: str) -> InMemoryChatMessageHistory:
                if session_id not in store:
                    store[session_id] = InMemoryChatMessageHistory()
                return store[session_id]

            llm = ChatOpenAI(model="gpt-3.5-turbo-0125")

            chain = RunnableWithMessageHistory(llm, get_session_history)
            chain.invoke(
                "Hi I'm Bob.",
                config={"configurable": {"session_id": "1"}},
            )  # session_id determines thread
    Memory objects can also be incorporated into the ``get_session_history`` callable:

        .. code-block:: python

            from langchain.memory import ConversationBufferWindowMemory
            from langchain_core.chat_history import InMemoryChatMessageHistory
            from langchain_core.runnables.history import RunnableWithMessageHistory
            from langchain_openai import ChatOpenAI


            store = {}  # memory is maintained outside the chain

            def get_session_history(session_id: str) -> InMemoryChatMessageHistory:
                if session_id not in store:
                    store[session_id] = InMemoryChatMessageHistory()
                    return store[session_id]

                memory = ConversationBufferWindowMemory(
                    chat_memory=store[session_id],
                    k=3,
                    return_messages=True,
                )
                assert len(memory.memory_variables) == 1
                key = memory.memory_variables[0]
                messages = memory.load_memory_variables({})[key]
                store[session_id] = InMemoryChatMessageHistory(messages=messages)
                return store[session_id]

            llm = ChatOpenAI(model="gpt-3.5-turbo-0125")

            chain = RunnableWithMessageHistory(llm, get_session_history)
            chain.invoke(
                "Hi I'm Bob.",
                config={"configurable": {"session_id": "1"}},
            )  # session_id determines thread

    Example:
        .. code-block:: python

            from langchain.chains import ConversationChain
            from langchain_community.llms import OpenAI

            conversation = ConversationChain(llm=OpenAI())
    """

    memory: BaseMemory = Field(default_factory=ConversationBufferMemory)
    """Default memory store."""
    prompt: BasePromptTemplate = PROMPT
    """Default conversation prompt to use."""

    input_key: str = "input"  #: :meta private:
    output_key: str = "response"  #: :meta private:

    class Config:
        arbitrary_types_allowed = True
        extra = "forbid"

    @classmethod
    def is_lc_serializable(cls) -> bool:
        return False

    @property
    def input_keys(self) -> List[str]:
        """Use this since so some prompt vars come from history."""
        return [self.input_key]

    @root_validator(pre=False, skip_on_failure=True)
    def validate_prompt_input_variables(cls, values: Dict) -> Dict:
        """Validate that prompt input variables are consistent."""
        memory_keys = values["memory"].memory_variables
        input_key = values["input_key"]
        if input_key in memory_keys:
            raise ValueError(
                f"The input key {input_key} was also found in the memory keys "
                f"({memory_keys}) - please provide keys that don't overlap."
            )
        prompt_variables = values["prompt"].input_variables
        expected_keys = memory_keys + [input_key]
        if set(expected_keys) != set(prompt_variables):
            raise ValueError(
                "Got unexpected prompt input variables. The prompt expects "
                f"{prompt_variables}, but got {memory_keys} as inputs from "
                f"memory, and {input_key} as the normal input key."
            )
        return values
